5 research outputs found

    Cross-turbine training of convolutional neural networks for SCADA-based fault detection in wind turbines

    Get PDF
    Machine learning algorithms for early fault detection of wind turbines using 10-minute SCADA data are attracting attention in the wind energy community due to their cost-effectiveness. It has been recently shown that convolutional neural networks (CNNs) can significantly improve the performance of such algorithms. One practical aspect in the deployment of these algorithms is that they require a large amount of historical SCADA data for training. These are not always available, for example in the case of newly installed turbines. Here we suggest a cross-turbine training scheme for CNNs: we train a CNN model on a turbine with abundant data and use the trained network to detect faults in a different wind turbine for which only little data are available. We show that this scheme is able to considerably improve the fault detection performance compared to the scarce data training. Moreover, it is shown to detect faults with an accuracy and robustness which are very similar to the single-turbine scheme, in which training and detection are both done on the same turbine with a large and representative training set. We demonstrate this for two different fault types: abrupt and slowly evolving faults and perform a sensitivity analysis in order to compare the performance of the two training schemes. We show that the cross-turbine scheme works successfully also when training on turbines from another farm and with different measured variables than the target turbine

    Transfer learning approaches for wind turbine fault detection using deep learning

    Get PDF
    Best Paper AwardImplementing machine learning and deep learning algorithms for wind turbine (WT) fault detection (FD) based on 10-minute SCADA data has become a relevant opportunity to reduce the operation and maintenance costs of wind farms. The development of practically implementable algorithms requires addressing the issue of their scalabililty to large wind farms. Two of the main challenges here are reducing the training times and enabling training with scarce or limited data. Both of these challenges can be addressed with the help of transfer learning (TL) methods, in which a base model is trained on a source WT and the learned knowledge is transferred to a target WT. In this paper we suggest three TL frameworks designed to transfer a semi-supervised FD task between turbines. As a base model we use a Convolutional Neural Network (CNN) which has been proven to perform well on the single turbine FD task. We test the three TL frameworks for transfer between WTs from the same farm and from different farms. We conclude that for the purpose of scaling up training for large farms, a simple TL based on linear regression transformation of the target predictions is an attractive high performance solution. For the challenging task of cross-farm TL based on scarce target data we show that a TL framework using combined linear regression and error-correction CNN outperforms the other methods. We demonstrate a scheme that enables the evaluation of different TL frameworks for FD without the need for labeled faults

    Early fault detection based on wind turbine SCADA data using convolutional neural networks

    Get PDF
    Early fault detection in wind turbines using the widely available SCADA data has been receiving growing interest due to its cost-effectiveness. As opposed to the large variety of fault detection methods based on high resolusion vibration data, the use of 10-minute SCADA data alone does not require any additional hardware or data storage solutions and would be immediately implementable in most wind farms. However, the strong variability of these data is challenging and requires significant improvements of existing methods to ensure early and reliable fault detection and isolation. Here we suggest to use Convolutional Neural Networks (CNNs) to enhance the detection accuracy and robustness. We demonstrate the superiority of the CNN model over standard fully connected neural networks (FCNN) using examples for faults with very different time dependent characteristics: an abruptly evolving and a slowly degrading fault. We show that the CNN is able to detect the faults earlier and with a higher accuracy and robustness of prediction than the FCNN model. We then extend the CNN model to a multi-output CNN (CNNm) which provides early fault detection based on a multitude of output variables simultaneously. We show that with the same training time and a similar detection quality as the single output CNN, the CNNm model is an ideal candidate for a practical and scalable fault detection algorithm based on already available 10-minute SCADA data for wind turbines

    Fault modeling in large-scale photovoltaic systems

    No full text

    Deep learning for fault detection : the path to predictive maintenance of wind turbines

    No full text
    We demonstrate the deployment of a novel deep learning algorithm enabling smart maintenance of wind turbines based on 10 minute SCADA data. The newly developed algorithm has the following advantages over existing solutions: • The algorithms are based on the already available 10-minute SCADA data and do not require any additional hardware installations. • The algorithm has been proven to detect various fault types earlier and more accurately than previous methods in the scientific literature. Incipient faults would have been detected weeks or even months prior to known events of a turbine stoppage. • The method is designed to not only detect faults but also specify their localization within the main critical turbine components. • The algorithm does not require a large amount of historical data for its training. Several months of SCADA data are sufficient. This is enabled due to the possibility to adapt the trained algorithm to detect faults on turbines from different wind farms. As such, it is applicable also to newly installed wind turbines and farms. • The method has proven to be robust against parameter variations and to have short training times. As such, it is an optimal practical and scalable solution for high confidence fault detection and diagnostics for wind turbines based on already available 10-minute SCADA data
    corecore